
Poplapay Server API (2.0.0)
Download OpenAPI specification: Download

This is a description of the public API that Poplapay provides for merchants and other integrators.

Endpoints and Versioning

There are separate production and development environments, with separate API endpoints. Production environment uses actual production credit cards
and transactions involve real money. Development environment uses bank issued test cards or certification test cards and does not involve real money.
Production cards must never be used with development environment and development cards must never be used with production environment.

Production endpoint: https://api.poplatek.com/api/v2/
Development endpoint: https://api.sandbox.poplatek.com/api/v2/

The API versioning follows Semantic Versioning 2.0.0 specification. Versions are specified as MAJOR.MINOR.PATCH, where:

MAJOR is incremented when incompatible API changes are made
MINOR is incremented when new functionality is added in a backwards-compatible manner

 DEVELOPERS ONLINE TOOLS

A P I R E L E A S E N O T E S

blob:https://poplapay.com/20b63a93-85ac-4fad-aa6a-2e6b736180a4
https://api.poplatek.com/api/v2/
https://api.sandbox.poplatek.com/api/v2/
http://semver.org/spec/v2.0.0.html
https://poplapay.com/dev/
https://poplapay.com/dev/
https://poplapay.com/
https://poplapay.com/
https://poplapay.com/dev/
https://poplapay.com/tools/
https://poplapay.com/dev/release-notes/

PATCH is incremented when backward compatible bug fixes are made

All methods include the major version in the method path as /api/MAJOR . Each API major version is supported for backwards compatibility for 12 months
from the publication of new major version.

Authentication

All API requests require authentication. Currently HTTP basic authentication is used for all requests. Send email to developers@poplapay.com to request a
development access key for authentication.

basic

Security Scheme Type HTTP

HTTP Authorization Scheme basic

eCommerce Payments

mailto:developers@poplapay.com

The Payment API supports eCommerce payments using payment cards. Implementation requires implementing background processing and storage of
payment transaction records at the merchant backend. The API supports deep integration of multiple checkout methods into the merchant site both at
shopping cart and checkout phases of the payment process.

Purchase overview

The purchase flow always involves four stages as shown below.

Prepare

All payments are initiated the same way. First insert a payment transaction record into merchant backend database. Then call Purchase, passing among
other things a unique ID of the record in the merchant database.

1. Insert a new payment transaction record into merchant database. The record must contain an ID that will never be used again, eg. a table primary key
or an UUID. This identifies the payment transaction, and is called ext_id .

2. Call Purchase endpoint, with parameters including:

ext_id from the previous step

Selected checkout method, or payment form
Shopping cart information

Response contains checkout method specific information.

Payment

The payment is authorized by user's bank during this stage. Unlike other stages, this one is not performed by calling a server-to-server API endpoint. Details
of this stage are different for each checkout method.

Often payment is performed by redirecting user to a URL to enter payment details, and redirected back to merchant's server.

Alternatively, there may need to be checkout method specific JavaScript code on the merchant page.

Get Outcome

After payment stage has been completed, the merchant backend must read payment transaction outcome (success or failure) by calling Get endpoint.
Merchant must then update its own database, and finally show the purchase result to user.

1. Call Get endpoint, passing ext_id . Response indicates among other things if the payment transaction was successful.

2. Store the outcome information into the payment transaction record in the merchant database.

3. Show the outcome to user.

Notice that the payment may have been successfully authorized in the Payment stage even if this stage isn't reached, eg. because user fails to redirect back
to the merchant's server. See "Transactional Reliability" for more information.

Confirm

Confirm must be called for all transactions for which a Purchase call has been completed or attempted, regardless of the payment outcome. This stage
must be performed on the background, because the Confirm call must be retried until it succeeds.

1. Call Confirm endpoint, passing ext_id . Even if Get indicates the payment transaction was successful, it's acceptable to confirm it as having failed.

2. Mark the payment transaction record as confirmed in the merchant database.

If Confirm is not called, the transaction will not be cleared, and manual processing may be required. Merchant will not receive payment even if authorization
was successful.

Checkout methods

Payment API supports multiple different checkout methods, given in Purchase request field checkout_method . In all the methods, the "Prepare", "Get
Outcome" and "Confirm" stages are similar. The largest differences are in user interface. Generally, the deeper the checkout method integrates with the
merchant platform (eg. a web site or mobile app), the larger the implementation effort and the potential for streamlined user experience.

PAYMENT_FORM

In the PAYMENT_FORM checkout method merchant redirects to a page where user enters card information. On completion user returns to return_url .
There are no branding restrictions concerning the checkout button or otherwise.

1. When user clicks on the checkout button, create a record in merchant database and then call Purchase, as described in "Prepare" section above.

2. Redirect user to the payment form URL in Purchase response field payment_form.redirect_url .

3. When user is redirected to return_url given in the Purchase call, the "Payment" stage is complete

4. Perform the steps described in the "Get Outcome" section above.

5. Interactive flow is now completed. Ensure that Confirm is eventually called by merchant's server as described in the "Confirm" section above.

Cancelling a purchase

A purchase can be cancelled before it has been settled with the acquirer, by calling Cancel. This does not create a new payment transaction, but modifies
the purchase transaction.

Refunding

A successful purchase can be refunded for 40 days by calling Refund. This creates a new payment transaction, which will be referenced by the purchase
transaction. There can be multiple partial refunds for a single purchase transaction.

Reporting API

Settlement

Returns settlement batches and their transactions for given day. Failed transactions are not present in any batch. Response may contain additional fields not
specified in this document. Such fields should be ignored.

Obs! Notice that while other endpoints of the server api are at /api/v2/ the settlement report is at /api/v1/.

QUERY PARAMETERS

string
Example: date=2014-05-20Z
Creation date of the settlement batches.

date
required

Responses

200 Success

500 Failed

Response samples

200 500

GET /api/v1/report/settlement

application/json

Expand all Collapse allCopy

Content type

Payment API

[
- {

"creation_time": "2024-11-06T07:23:05.681Z",
"currency": 978,
"currency_alpha": "EUR",
"feedback_status": "ACCEPTED",
"merchant_id": 12345,
"merchant_number": "2100112307",
"purchases_amount": 83750,
"purchases_count": 51,
"reference_number": null,
"refunds_amount": 4995,
"refunds_count": 3,
"sales_location_id": 12345,
"settlement_batch_id": "517",
"state": "DELIVERED",
"transactions": … + []

}
]

Cancel

Cancels a purchase transaction completely. The customer will not be charged for the transaction after cancellation, and any reserved funds will be freed.
Cancellation for a partial amount is not supported.

Cancellation is not possible for transactions which have already been settled with the acquirer. Such transactions will have to be refunded instead.

As opposed to Refund which creates a new payment transaction, Cancel modifies the existing purchase transaction by setting status_code to
USER_CANCELLED .

Returns the cancelled payment transaction the same way as Get.

If the payment transaction is already cancelled, its information will be returned unchanged. Therefore, this call is idempotent, and can be safely retried.

AUTHORIZATIONS: basic

REQUEST BODY SCHEMA: application/json

string
Payment transaction identifier given by the calling system. Handled as an opaque string, and used together with
ext_scope to uniquely identify the transaction.

string
Identifier scope for ext_id . Usually automatically derived from caller's authentication. The pair of ext_scope and
ext_id is guaranteed to uniquely identify a single payment transaction.

string
Payment transaction identifier assigned by Poplapay. Unique across all ext_scope values, so may be easier to use
if ext_scope can't be automatically derived from caller's authentication. When passed, possible ext_id and
ext_scope parameters will be ignored.

ext_id

ext_scope

unique_id

string^[A-Z_]+$
Reason for the cancellation.

USER_CANCELLED : Customer cancelled the purchase by his own action.
TIMEOUT : Some timeout was triggered during purchase processing, and the purchase was cancelled.
MERCHANT_CANCELLED : Merchant decided to cancel the purchase.
UNKNOWN : Other cancellation reason. reason_description should give more information.

Other codes can be used, but should be agreed with Poplapay.

string
A human readable description of the cancellation reason. This will not be presented to the user, but will be shown in
logs, and administrative interfaces, and refund transaction's information.

Responses

200 Success

500 Failed

Request samples

Payload

reason_code
required

reason_description

POST /api/v2/payment/cancel

Response samples

200 500

application/json

Expand all Collapse allCopy
{

"ext_id": "a526ceca-565e-493e-aad6-a4912b5453c3",
"ext_scope": "web123",
"unique_id": "2a:1087143940",
"reason_code": "USER_CANCELLED",
"reason_description": "string"

}

application/json

Expand all Collapse allCopy
{

"ext_id": "a526ceca-565e-493e-aad6-a4912b5453c3",
"ext_scope": "web123",
"unique_id": "2a:1087143940",
"status_code": "SUCCESS",
"status_description": "Transaction successful.",
"status_details": "string",
"state": "PREPARE",
"transaction_type": "PURCHASE",
"timestamp": "2016-10-12T11:06:19.241Z",

Content type

Content type

"confirm_timestamp": "2016-10-12T11:06:27.090Z",
"merchant_id": 9413,
"settlement_contract_id": 1426,
"sales_location_id": 38244,
"terminal_id": 10353,
"hardware_id": "a0f6fd72e785",
"amount": 1200,
"cashback_amount": 0,
"refundable_amount": 1200,
"currency": 978,
"cardholder_verification": "PIN",
"entry_mode": "chip",
"card_number_customer": "************0035",
"card_number_merchant": "411122******0035",
"card_scheme": "VI",
"card_country": 246,
"card_currency": 978,
"acquirer_timestamp": "161012140619",
"acquirer_reference": "161012123253",
"order_id": "5e98ebdeb3a17b48012400746a18ca9a",
"order_description": "5e98ebdeb3a17b48012400746a18ca9a",
"browser_ip_country": 246,
"authorized": true,
"authorized_amount": 1200,
"authorization_code": "string",
"id_check_performed": true,
"external_data": - {

"name": "John Doe",
"shift": … + { }

},
"referring_transactions": "2a:1087143945"

}

Refund

Refunds an existing purchase transaction fully or partially. It's possible to refund a transaction partially multiple times, as long as the sum of refunds does not
exceed amount of the original transaction.

Refund is usually possible within 70 days of purchase, but this may vary.

The original purchase transaction that this is a refund for is identified by parameters original_ext_id , original_ext_scope and
original_unique_id , which can be given in similar combinations as Get's ext_id , ext_scope and unique_id .

The original transaction must be successful (status_code=SUCCESS) and it must be confirmed (state=CLOSED). If these conditions don't hold, the
transaction won't be settled with the acquirer and so refunding would make no sense.

This request will create a new payment transaction with given ext_id and transaction_type=REFUND . The transaction will need to be confirmed with
the Confirm call.

The unique_id that is automatically assigned to this refund transaction will be added to referring_transactions field of the original purchase
transaction.

Returns the created refund transaction the same way as Get.

If a refund transaction with the same ext_id and ext_scope already exists, its information will be returned unchanged, and no changes to the original
purchase transaction are made. Therefore, this call is idempotent, and can be safely retried.

AUTHORIZATIONS: basic

REQUEST BODY SCHEMA: application/json

stringext_id

Payment transaction identifier given by the calling system. Handled as an opaque string, and used together with
ext_scope to uniquely identify the transaction.

string
Identifier scope for ext_id . Usually automatically derived from caller's authentication. The pair of ext_scope and
ext_id is guaranteed to uniquely identify a single payment transaction.

string
Original purchase transaction's ext_id .

string
Original purchase transaction's ext_scope . If not given, defaults to this request's ext_scope .

string
Original purchase transaction's unique_id .

integer >= 0

The amount to be refunded. This may be equal to or smaller than the current refundable_amount for the
purchase transaction. For exact format, see field of the same name in Get response.

integer [0 .. 999]

Currency that the amount is in. For exact format, see field of the same name in Get response.

string^[A-Z_]+$
Reason for the refund.

MERCHANT_REFUND : Merchant decided to refund part or all of the purchase. The reason for this may be product
returns, inability to deliver, or some other reason.
UNKNOWN : Other refund reason. reason_description should give more information.

Other codes can be used, but should be agreed with Poplapay.

string

required

ext_scope

original_ext_id

original_ext_scope

original_unique_id

amount
required

currency
required

reason_code
required

reason_description

A human readable description of the refund reason. This will not be presented to the user, but will be shown in logs
and administrative interfaces, and refund transaction's information.

string
This field is required if the relevant feature is enabled for the account. Otherwise this field is ignored. Value is the
transaction timestamp in local time as YYMMDDHHMMSS . Must be within 5 minutes of current time.

string
This field is required if the relevant feature is enabled for the account. Otherwise this field is ignored. The first six
digits must match the the same digits of transaction time. The last six digits must be between 100000-899999.
Hence, the format is YYMMDDNNNNNN . Must be unique among all transactions of the payment terminal contract.

Responses

200 Success

500 Failed

Request samples

Payload

transaction_time

reference_number

POST /api/v2/payment/refund

application/json
Content type

Response samples

200 500

Expand all Collapse allCopy
{

"ext_id": "a526ceca-565e-493e-aad6-a4912b5453c3",
"ext_scope": "web123",
"original_ext_id": "a526ceca-565e-493e-aad6-a4912b5453c3",
"original_ext_scope": "web123",
"original_unique_id": "2a:1087143940",
"amount": 1200,
"currency": 978,
"reason_code": "MERCHANT_REFUND",
"reason_description": "string",
"transaction_time": "161012140619",
"reference_number": "161012123253"

}

application/json

Expand all Collapse allCopy
{

"ext_id": "a526ceca-565e-493e-aad6-a4912b5453c3",
"ext_scope": "web123",
"unique_id": "2a:1087143940",
"status_code": "SUCCESS",
"status_description": "Transaction successful.",
"status_details": "string",
"state": "PREPARE",

Content type

"transaction_type": "PURCHASE",
"timestamp": "2016-10-12T11:06:19.241Z",
"confirm_timestamp": "2016-10-12T11:06:27.090Z",
"merchant_id": 9413,
"settlement_contract_id": 1426,
"sales_location_id": 38244,
"terminal_id": 10353,
"hardware_id": "a0f6fd72e785",
"amount": 1200,
"cashback_amount": 0,
"refundable_amount": 1200,
"currency": 978,
"cardholder_verification": "PIN",
"entry_mode": "chip",
"card_number_customer": "************0035",
"card_number_merchant": "411122******0035",
"card_scheme": "VI",
"card_country": 246,
"card_currency": 978,
"acquirer_timestamp": "161012140619",
"acquirer_reference": "161012123253",
"order_id": "5e98ebdeb3a17b48012400746a18ca9a",
"order_description": "5e98ebdeb3a17b48012400746a18ca9a",
"browser_ip_country": 246,
"authorized": true,
"authorized_amount": 1200,
"authorization_code": "string",
"id_check_performed": true,

"external_data": - {
"name": "John Doe",
"shift": … + { }

},
"referring_transactions": "2a:1087143945"

}

Get

Get full information about a payment transaction.

A transaction is considered successful if status_code field has value SUCCESS . If state field has value other than CLOSED , the payment flow is not
yet completed, and status_code may still change.

changed eg. if a Confirm call marks the transaction has failed.

AUTHORIZATIONS: basic

REQUEST BODY SCHEMA: application/json

string
Payment transaction identifier given by the calling system. Handled as an opaque string, and used together with
ext_scope to uniquely identify the transaction.

string
Identifier scope for ext_id . Usually automatically derived from caller's authentication. The pair of ext_scope and
ext_id is guaranteed to uniquely identify a single payment transaction.

ext_id

ext_scope

string
Payment transaction identifier assigned by Poplapay. Unique across all ext_scope values, so may be easier to use
if ext_scope can't be automatically derived from caller's authentication. When passed, possible ext_id and
ext_scope parameters will be ignored.

integer
Poplapay-assigned identifier for the particular payment site. A single merchant may have several differently
configured payment sites, which are identified by their unique terminal_id values. The field name
terminal_id refers to a similarily named field in acquirer protocols, and is shared with physical payment terminal

transactions.

The pair of terminal_id and reference_number is normally enough to uniquely identify a single payment
transaction.

string
Twelve-digit reference number of the financial transaction.

The pair of terminal_id and reference_number is normally enough to uniquely identify a single payment
transaction.

Responses

200 Success

500 Failed

unique_id

terminal_id

reference_number

Request samples

Payload

Response samples

200 500

POST /api/v2/payment/get

application/json

Expand all Collapse allCopy
{

"ext_id": "a526ceca-565e-493e-aad6-a4912b5453c3",
"ext_scope": "web123",
"unique_id": "2a:1087143940",
"terminal_id": 15354,
"reference_number": "150304000133"

}

application/json

Expand all Collapse allCopy
{

"ext_id": "a526ceca-565e-493e-aad6-a4912b5453c3",

Content type

Content type

"ext_scope": "web123",
"unique_id": "2a:1087143940",
"status_code": "SUCCESS",
"status_description": "Transaction successful.",
"status_details": "string",
"state": "PREPARE",
"transaction_type": "PURCHASE",
"timestamp": "2016-10-12T11:06:19.241Z",
"confirm_timestamp": "2016-10-12T11:06:27.090Z",
"merchant_id": 9413,
"settlement_contract_id": 1426,
"sales_location_id": 38244,
"terminal_id": 10353,
"hardware_id": "a0f6fd72e785",
"amount": 1200,
"cashback_amount": 0,
"refundable_amount": 1200,
"currency": 978,
"cardholder_verification": "PIN",
"entry_mode": "chip",
"card_number_customer": "************0035",
"card_number_merchant": "411122******0035",
"card_scheme": "VI",
"card_country": 246,
"card_currency": 978,
"acquirer_timestamp": "161012140619",
"acquirer_reference": "161012123253",
"order_id": "5e98ebdeb3a17b48012400746a18ca9a",
"order_description": "5e98ebdeb3a17b48012400746a18ca9a",
"browser_ip_country": 246,
"authorized": true,

"authorized_amount": 1200,
"authorization_code": "string",
"id_check_performed": true,
"external_data": - {

"name": "John Doe",
"shift": … + { }

},
"referring_transactions": "2a:1087143945"

}

Confirm

Confirms a purchase or refund transaction as successful or failed.

If purchase processing has been successful in merchant site (merchant's customer will receive the purchased product), confirm the transaction as
successful by passing value SUCCESS in result_code . Otherwise use any other value, which will be considered an error code. After this call,
transaction's state will be CLOSED .

If Get response indicates the transaction was successful (status_code=SUCCESS) it can be confirmed as either successful or failed. Otherwise it must be
confirmed as failed. After being confirmed as failed, transaction's status_code will have a value other than SUCCESS .

A call will be successful (HTTP status 200) even if the specified transaction does not exist. This enables calling Confirm for all ext_id 's for which
Purchase call has been attempted.

Transaction's status_code may still change after this call has completed, for example as a result of a Cancel call.

This endpoint shouldn't be called as part of user interaction, but from a background thread, because a failed call always requires retrying until successful.
See "Transactional Reliability" for more discussion.

AUTHORIZATIONS: basic

REQUEST BODY SCHEMA: application/json

string
Payment transaction identifier given by the calling system. Handled as an opaque string, and used together with
ext_scope to uniquely identify the transaction.

string
Identifier scope for ext_id . Usually automatically derived from caller's authentication. The pair of ext_scope and
ext_id is guaranteed to uniquely identify a single payment transaction.

string^[A-Z_]+$
Pass SUCCESS if Get response indicates the payment transaction was successful (status_code=SUCCESS), and
no errors have occurred in merchant site either. Otherwise pass any other value, which will be considered an error
code.

string
Usually only used if result_code is not SUCCESS . An English human readable error description to be used for
debugging. The value will be visible in Get response field status_description , if that field was formerly empty.

string
Usually only used if result_code is not SUCCESS . A stack traceback or other verbose context information about
the error. The value will be visible in Get response field status_details , if that field was formerly empty.

Responses

— 200 Success

ext_id

ext_scope

result_code
required

result_description

result_details

500 Failed

Request samples

Payload

Response samples

500

POST /api/v2/payment/confirm

application/json

Expand all Collapse allCopy
{

"ext_id": "a526ceca-565e-493e-aad6-a4912b5453c3",
"ext_scope": "web123",
"result_code": "DB_ERROR",
"result_description": "Database update failed: connection refused",
"result_details": "Traceback (most recent call last): ..."

}

application/json

Content type

Content type

Merchant API

Expand all Collapse allCopy
{

"error_code": "NOT_FOUND",
"error_description": "Missing required parameter: foo",
"error_details": "Traceback (most recent call last): ..."

}

Get hardware

Get full information about hardware, and basic information about the terminal contract, sales location, and merchant the hardware may be attached to.

AUTHORIZATIONS: basic

REQUEST BODY SCHEMA: application/json

string
Unique ID (sometimes called "MAC") of the hardware.

hardware_id
required

Responses

200 Success

500 Failed

Request samples

Payload

Response samples

200 500

POST /api/v2/merchant/hardware/get

application/json

Expand all Collapse allCopy
{

"hardware_id": "0001234abcd1"
}

application/json

Content type

Content type

Expand all Collapse allCopy
{

"hardware_id": "0001234abcd1",
"hardware_model": "YOMANI ML",
"ownership": "OWNED",
"terminal_contract": - {

"terminal_contract_id": 123456,
"terminal_contract_type": "spm20-poplatek-offline",
"display_name": "POS 3",
"sales_location": … + { }

}
}

Attach hardware

Attach hardware (a physical terminal) to an existing terminal contract. This operation has no effect on billing, which is based on active terminal contracts.
Multiple hardwares should be attached to a terminal contract only temporarily, eg. when replacing a broken hardware. Successful response is an empty
object. If the hardware is already attached to the terminal contract, a success response is returned. This way retrying a timed out request is straightforward.

AUTHORIZATIONS: basic

REQUEST BODY SCHEMA: application/json

integer
ID of the terminal contract to attach the hardware to.

terminal_contract_id
required

string
ID (sometimes called "MAC") of the hardware to attach to the terminal contract. ID is not case sensitive.

Responses

— 200 Success

500 Failed

Request samples

Payload

hardware_id
required

POST /api/v2/merchant/terminal_contract/attach_hardware

application/json

Expand all Collapse allCopy
{

"terminal_contract_id": 1234,
"hardware_id": "0001234abcd1"

}

Content type

Response samples

500

application/json

Expand all Collapse allCopy
{

"error_code": "INVALID_HARDWARE",
"error_description": "Missing required parameter: foo",
"error_details": "Traceback (most recent call last): ..."

}

Content type

Detach hardware

Detach hardware (a physical terminal) from a terminal contract. This operation has no effect on billing, which is based on active terminal contracts. Hardware
is typically detached when the terminal contract period has ended, or when the hardware is broken and replacement hardware is attached instead.
Successful response is an empty object. If the hardware is already not attached to the terminal contract, a success response is returned. This way retrying a
timed out request is straightforward.

AUTHORIZATIONS: basic

REQUEST BODY SCHEMA: application/json

integer
ID of the terminal contract to detach the hardware from.

terminal_contract_id
required

string
ID (sometimes called "MAC") of the hardware to detach from the terminal contract. ID is not case sensitive.

Responses

— 200 Success

500 Failed

Request samples

Payload

hardware_id
required

POST /api/v2/merchant/terminal_contract/detach_hardware

application/json

Expand all Collapse allCopy
{

"terminal_contract_id": 1234,
"hardware_id": "0001234abcd1"

}

Content type

eCommerce API

This API covers eCommerce purchase flow. Refunds, cancellations, and getting purchase (transaction) status is performed using Payment API.

Response samples

500

application/json

Expand all Collapse allCopy
{

"error_code": "INVALID_TERMINAL_CONTRACT",
"error_description": "Missing required parameter: foo",
"error_details": "Traceback (most recent call last): ..."

}

Content type

Store card

Prepares a new transaction identified by ext_id for processing. The transaction_type field will have value ACCOUNT_CHECK .

If a store card transaction with the same ext_id and ext_scope already exists, its information will be returned unchanged. Therefore, this call is
idempotent, and can be safely retried.

The transaction will need to be confirmed with the Confirm call.

AUTHORIZATIONS: basic

REQUEST BODY SCHEMA: application/json

string
Transaction identifier given by the calling system. This will be handled as an opaque string and is used to uniquely
identify the transaction. This should be allocated and stored in a database before sending the request so that
transactional reliability can be achieved. See section "Transactional Reliability".

integer
Poplapay-assigned identifier for the particular payment site. A single merchant may have several differently
configured payment sites, which are identified by their unique terminal_id values. The field name
terminal_id refers to a similarily named field in acquirer protocols, and is shared with physical payment terminal

transactions.

integer [0 .. 999]

Currency code of the transaction according to ISO 4217 numeric, e.g. 978 for euro.

string
The URL of the page from where the checkout action will be invoked, either by navigating to an URL or some
JavaScript based checkout method.

string
The URL of the page to which user will be redirected after payment has been completed. The same url will be used
for both success and failure cases.

string^[a-z]{2}$
Default: "en"

ext_id
required

terminal_id
required

currency
required

origin_url
required

return_url
required

language
required

The currently used interface language by the customer, as a two letter code specified by ISO 639-1, e.g. fi for
Finnish.

Array of strings
Items Enum: "VI" "MC" "AX" "DC" "JC" "UP"
A list of one or more card schemes that the purchase is permitted to be completed with. If this field is not used, all
schemes are allowed. This list will be further restricted by the settlement contracts the merchant has. List items are
as following:

VI : Visa and Visa Electron
MC : MasterCard and Maestro
AX : American Express
DC : Diners Club
JC : Japan Credit Bureau
UP : China UnionPay

string
ID of the order that this purchase transaction is for. There may be multiple purchase transactions per order, usually
because some of the purchases have not succeed or are partial. This is not shown in any UI, but will be visible in
transaction's information so can be useful in reporting or debugging.

string
Freeform order description. Will be shown to the customer in eCommerce payment form, and will be retained in logs
but not processed programmatically. Required if checkout_method is PAYMENT_FORM or STORE_CARD .

boolean
Default: false
To create recurring payment of transaction. This is just indicator for Nets. Merchant backend still needs to invoke
payments in wanted cycle with checkout_method as STORED_CARD .

Responses

allowed_card_schemes

order_id

order_description

recurring_payment

200 Success

500 Failed

Request samples

Payload

POST /api/v2/card/store

application/json

Expand all Collapse allCopy
{

"ext_id": "c2c8efe7-8b54-430b-b843-79cef6529948",
"terminal_id": 15354,
"currency": 978,
"origin_url": "https://example.com/merchant/page/checkout",
"return_url": "https://example.com/merchant/page/checkoutcomplete",
"language": "fi",
"allowed_card_schemes": - [

"VI",
"MC",
"AX"

],
"order_id": "5e98ebdeb3a17b48012400746a18ca9a",

Content type

https://example.com/merchant/page/checkout
https://example.com/merchant/page/checkoutcomplete

Response samples

200 500

"order_description": "5e98ebdeb3a17b48012400746a18ca9a",
"recurring_payment": false

}

application/json

Expand all Collapse allCopy
{

"store_card_form": - {
"redirect_url": "https://example.com/payment_form/page/"

},
"ext_id": "a526ceca-565e-493e-aad6-a4912b5453c3",
"ext_scope": "web123",
"unique_id": "2a:1087143940",
"status_code": "SUCCESS",
"status_description": "Transaction successful.",
"status_details": "string",
"state": "PREPARE",
"transaction_type": "PURCHASE",
"timestamp": "2016-10-12T11:06:19.241Z",
"confirm_timestamp": "2016-10-12T11:06:27.090Z",
"merchant_id": 9413,
"settlement_contract_id": 1426,
"sales_location_id": 38244,
"terminal_id": 10353,
"hardware_id": "a0f6fd72e785",

Content type

https://example.com/payment_form/page/

"amount": 1200,
"cashback_amount": 0,
"refundable_amount": 1200,
"currency": 978,
"cardholder_verification": "PIN",
"entry_mode": "chip",
"card_number_customer": "************0035",
"card_number_merchant": "411122******0035",
"card_scheme": "VI",
"card_country": 246,
"card_currency": 978,
"acquirer_timestamp": "161012140619",
"acquirer_reference": "161012123253",
"order_id": "5e98ebdeb3a17b48012400746a18ca9a",
"order_description": "5e98ebdeb3a17b48012400746a18ca9a",
"browser_ip_country": 246,
"authorized": true,
"authorized_amount": 1200,
"authorization_code": "string",
"id_check_performed": true,
"external_data": - {

"name": "John Doe",
"shift": … + { }

},
"referring_transactions": "2a:1087143945"

}

Remove card

Remove stored payment card with token.

AUTHORIZATIONS: basic

REQUEST BODY SCHEMA: application/json

string
Card token which is received when done card store or purchase with card storing option.

Responses

200 Success

500 Failed

Request samples

Payload

token
required

POST /api/v2/card/remove

Response samples

200 500

application/json

Expand all Collapse allCopy
{

"token": "c2c8efe7-8b54-430b-b843-79cef6529948"
}

application/json

Expand all Collapse allCopy
{

"result": "SUCCESS"
}

Content type

Content type

Purchase

Prepares a new payment transaction identified by ext_id for processing. The transaction_type field will have value PURCHASE .

If a purchase transaction with the same ext_id and ext_scope already exists, its information will be returned unchanged. Therefore, this call is
idempotent, and can be safely retried.

The purchase transaction will need to be confirmed with the Confirm call.

AUTHORIZATIONS: basic

REQUEST BODY SCHEMA: application/json

string
Transaction identifier given by the calling system. This will be handled as an opaque string and is used to uniquely
identify the transaction. This should be allocated and stored in a database before sending the request so that
transactional reliability can be achieved. See section "Transactional Reliability".

integer
Poplapay-assigned identifier for the particular payment site. A single merchant may have several differently
configured payment sites, which are identified by their unique terminal_id values. The field name
terminal_id refers to a similarily named field in acquirer protocols, and is shared with physical payment terminal

transactions.

integer [0 .. 999999999999]

Amount of the transaction expressed with implicit decimal point corresponding to the minor unit of currency as
defined by ISO 4217. Eg. for 12.00 euros pass value 1200.

integer [0 .. 999]

Currency code of the transaction according to ISO 4217 numeric, e.g. 978 for euro.

string
The URL of the page from where the checkout action will be invoked, either by navigating to an URL or some
JavaScript based checkout method.

string
The URL of the page to which user will be redirected after payment has been completed. The same url will be used
for both success and failure cases.

ext_id
required

terminal_id
required

amount
required

currency
required

origin_url
required

return_url
required

string
Enum: "PAYMENT_FORM" "STORED_CARD" "MOBILEPAY"
See section "Checkout Methods" above.

string^[a-z]{2}$
Default: "en"
The currently used interface language by the customer, as a two letter code specified by ISO 639-1, e.g. fi for
Finnish.

Array of strings
Items Enum: "VI" "MC" "AX" "DC" "JC" "UP"
A list of one or more card schemes that the purchase is permitted to be completed with. If this field is not used, all
schemes are allowed. This list will be further restricted by the settlement contracts the merchant has. List items are
as following:

VI : Visa and Visa Electron
MC : MasterCard and Maestro
AX : American Express
DC : Diners Club
JC : Japan Credit Bureau
UP : China UnionPay

string
Enum: "VI" "MC" "AX" "DC" "JC" "UP"
Card scheme the purchase is meant to be completed with, but user can use any other scheme permitted by
allowed_card_schemes . Completed transaction will show which scheme was ultimately used for transaction.

boolean
Default: false
Reject purchases that cannot be authenticated via Visa 3-D Secure, MasterCard SecureCode or similar technology.
Such purchases carry higher risk for the merchant, but provide an easier payment experience for the customer.

checkout_method
required

language
required

allowed_card_schemes

card_scheme

reject_unauthenticated

boolean
Default: false
Attempt to complete payment without using Visa 3-D Secure, MasterCard SecureCode or similar technology for
authentication. Such purchases carry higher risk for merchant, but provide an easier payment experience for the
customer.

string
ID of the order that this purchase transaction is for. There may be multiple purchase transactions per order, usually
because some of the purchases have not succeed or are partial. This is not shown in any UI, but will be visible in
transaction's information so can be useful in reporting or debugging.

string
Freeform order description. Will be shown to the customer in eCommerce payment form, and will be retained in logs
but not processed programmatically. Required if checkout_method is PAYMENT_FORM .

string
Default: null
Enum: "REQUIRED" "OPTIONAL" "DISABLED"
Store card options determines how form is displayed for user. REQUIRED forces user to store card. OPTIONAL
allows user to choose wheter to store card. DISABLED doesn't allow user to store card at all. If not given
DISABLED is default value.

boolean
Default: false
To create recurring payment of transaction. This is just indicator for Nets. Merchant backend still needs to invoke
payments in wanted cycle with checkout_method as STORED_CARD .

Array of objects
List of shopping cart items. Currently not used.

Responses

prefer_unauthenticated

order_id

order_description

store_card

recurring_payment

shopping_cart

200 Success

500 Failed

Request samples

Payload

POST /api/v2/payment/purchase

application/json

Expand all Collapse allCopy
{

"ext_id": "c2c8efe7-8b54-430b-b843-79cef6529948",
"terminal_id": 15354,
"amount": 1200,
"currency": 978,
"origin_url": "https://example.com/merchant/page/checkout",
"return_url": "https://example.com/merchant/page/checkoutcomplete",
"checkout_method": "PAYMENT_FORM",
"language": "fi",

Content type

https://example.com/merchant/page/checkout
https://example.com/merchant/page/checkoutcomplete

Response samples

200 500

"allowed_card_schemes": - [
"VI",
"MC",
"AX"

],
"card_scheme": "VI",
"reject_unauthenticated": false,
"prefer_unauthenticated": true,
"order_id": "5e98ebdeb3a17b48012400746a18ca9a",
"order_description": "5e98ebdeb3a17b48012400746a18ca9a",
"store_card": "REQUIRED",
"recurring_payment": false,
"shopping_cart": - [

 … + { }
]

}

application/json

Expand all Collapse allCopy
{

"payment_form": - {
"redirect_url": "string"

},
"ext_id": "a526ceca-565e-493e-aad6-a4912b5453c3",
"ext_scope": "web123",

Content type

"unique_id": "2a:1087143940",
"status_code": "SUCCESS",
"status_description": "Transaction successful.",
"status_details": "string",
"state": "PREPARE",
"transaction_type": "PURCHASE",
"timestamp": "2016-10-12T11:06:19.241Z",
"confirm_timestamp": "2016-10-12T11:06:27.090Z",
"merchant_id": 9413,
"settlement_contract_id": 1426,
"sales_location_id": 38244,
"terminal_id": 10353,
"hardware_id": "a0f6fd72e785",
"amount": 1200,
"cashback_amount": 0,
"refundable_amount": 1200,
"currency": 978,
"cardholder_verification": "PIN",
"entry_mode": "chip",
"card_number_customer": "************0035",
"card_number_merchant": "411122******0035",
"card_scheme": "VI",
"card_country": 246,
"card_currency": 978,
"acquirer_timestamp": "161012140619",
"acquirer_reference": "161012123253",
"order_id": "5e98ebdeb3a17b48012400746a18ca9a",
"order_description": "5e98ebdeb3a17b48012400746a18ca9a",
"browser_ip_country": 246,
"authorized": true,
"authorized_amount": 1200,

"authorization_code": "string",
"id_check_performed": true,
"external_data": - {

"name": "John Doe",
"shift": … + { }

},
"referring_transactions": "2a:1087143945"

}

